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Consider the Banach space of bounded functions with uniform norm. Given an
element f and a closed convex set in this space, the minimum norm problem 1s to
find an element in the convex set nearest to f. Such a nearest point is not unique in
general. For each f in the space, is it possible to select a nearest element /7 so that
the selection operator f — f” satisfies a Lipschitz condition with some constant C?
If so, does there exist an operator for which C is minimum? This article determines
the required Lipschitzian selection operators with smallest possible constants for
the minimum norm problem in three cases of special interest. ¢ 1985 Academic Press.
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1. INTRODUCTION

It 1s a well-known fact that in a Hilbert space, the projection operator,
mapping the space onto a closed linear manifold, satisfies a Lipschitz con-
dition with constant unity. Indeed, if /” and A" are respective projections of
two elements f and & of the Hilbert space onto the manifold. then
| f"—Hh| < f—~h|, where || is the Hilbert norm. More generally, this
condition also holds when f” is the unique element closest to f in a closed
convex subset of a Hilbert space. Now consider the minimum norm
problem of finding a nearest element from a closed convex set in the
Banach space of bounded functions with uniform norm. This article
establishes the Lipschitz condition with appropriate constants for operators
in this problem. Given an element f in this space, the set of all elements in
the convex set nearest to fis itself convex and in general, this set is not a
singleton as it is in a Hilbert space. Questions that arise naturally in this

* An abstract of this paper appears in Abstracts Amer. Math. Soc. 4 (1983), 396. This paper
was presented by the author at the Joint National ORSA/TIMS Meeting in Chicago in April
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case are the following. For each £, is it possible to select an element f* from
this convex set of nearest elements so that the non-linear selection operator
f—f" satisfies the Lipschitz condition with some constant C, 1ie.,
| /"—Hh| <C| f—h| holds for all pairs of elements f and A? If so, does
there exist an optimal selection operator for which C is minimum? In this
article, such optimal Lipschitzian selection operators are constructed for
three problems of special interest, viz., the greatest convex minorant,
approximation by convex functions and generalized isotone optimization.
It is interesting to note that Hilbert-like properties apply to the nonlinear
operators constructed in these problems although the space under con-
sideration is not Hilbert.

We now introduce some notation and elaborate on the problem. Let §
be any set and B denote the Banach space of all bounded real functions on
S with the uniform norm,

I fll=sup{lf(s):5€S},  feB. (L.1)

Given an element fin B, let K,, possibly dependent on f, denote a non-
empty closed convex subset of B. If A(f) denotes the infimum of {| f/— k]|
over all k£ in K, the set G, of all nearest elements g satisfying

M) =11/ =gl =infi[i f—kl: ke K, ]. (1.2)

is a closed convex subset of B, as may be easily verified. A selection
operator 7" is a nonlinear operator which maps each f'in Bto an /" in G,.
We wish to determine an optimal selection operator 7: /' — ", and a (least)
number C, if these exist, so that

T =TI <Cllf—=hl  forall /, heB, (1.3)

where T is such that C is the smallest number for all possible choices of the
selection operator 7. That is

C=infsup{|T"(f)— T (WI/II f=hll: /. he B, [ #h}, (1.4)

where the infimum is taken over all 77 and is attained at 7. In addition, we
examine the validity of

[A(f) =A< D | f—hll forall f. he B, (1.5)
where D is the smallest possible number satisfying (1.5) or
D=sup{|A(f)— AN/ J—hl: /. he B f#h. (1.6)

Note that A(f) is independent of 7. In each of the three problems con-
sidered in this article, we first determine an operator 7 with its associated
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constant C. We then establish the optimality of T by showing that a lower
value of C does not exist for any T'. In Section 2 we show that the con-
stant, say C(7"), associated with any Lipschitzian selection operator 7" is a
convex function of T’ over some convex set of operators. Thus, C= C(T)
minimizes this convex function. In Section 5, we give examples of selection
operators with different values of C. The issue of uniqueness of T is not
analyzed in this article; it will be considered elsewhere.

The motivation for considering this problem comes from a similar result
in a Hilbert space mentioned earlier (e.g., [7, p. 100]) and this author’s
earlier result [18, II, p. 3207 for the problem of isotone optimization. In
Section 3, we consider the problem of finding a convex function nearest to
a given f but not exceeding it at any point. We show that an optimal 7
maps f to its greatest convex minorant, the maximal optimal solution to
the problem, with C=1 and D =2. In Section 4, we analyze the problem of
finding a convex function nearest to f and show that an optimal 7 maps f
to the maximal optimal solution of the problem with C=2 and D=1. It is
shown in [19] that this maximal optimal solution is the greatest convex
minorant of f shifted upward through a certain distance. This observation,
together with an available algorithm for obtaining convex hulls [1, 2, §, 9,
147, has led to a linear time algorithm (O(n)) for computing this solution
on a set of n points in an interval. Other linear time algorithms based on
linear programming approaches appear in [21]. In Section 5, an optimal T
with C=1 is constructed for the problem of generalized isotone
optimization [20] when the weight function is identically equal to unity.
Here, S is a partially ordered set and the convex set under consideration is
a closed convex cone determined by isotonicity and nonnegativity con-
ditions on functions. It is shown in [20] that any optimal solution to the
problem is “enclosed” between minimal and maximal optimal solutions.
The operator T maps f to the mean of these two solutions.

Minimum norm problems arise as curve fitting or estimation problems
when the initial data points f(r) based on experimental observations dis-
play certain random variations and need be estimated by an element from
a convex set K, We write f(t)=u(f)+#n(t), where p is in K, and n
represents a random disturbance or noise. The actual values of p are not
known. We estimate u by f* which is in K,, is nearest to f and has
additional properties. For example, in economics, assumptions of concavity
or convexity are often made regarding various functions such as utility,
marginal utility, production, etc. [10, 11]. If p(z) is such a convex function
representing a particular entity as a function of ¢, we obtain its convex
estimate f'(¢) on the basis of the actual observations f(¢) of the entity. A
special case of the problem of generalized isotone optimization discussed in
Section 5 arises, for example, when it becomes necessary to estimate the
failure rate of a system under the assumption that it is nonincreasing. This
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assumption applies during the “debugging™ period of the system when the
defects of the system are gradually being eliminated [ 18, 207]. Inequality
(1.3) involving an optimal Lipschitzian selection operator f — /' signifies
the minimum possible sensitivity of a nearest element /' to changes in /.
Consequently, /* is the most desirable estimate of f. Additional references
on analysis of similar problems are [4. 5, 13, 17, 22, 237]. A survey of con-
strained approximation problems on the space of continuous functions in
which the approximants mainly form a subset of a Haar subspace or are
rational functions. appears in [3]. Although, most problems considered in
this survey have a different structure from those analyzed in this article, the
underlying concept- -approximation from convex subsets---is the same.

2. A GENERAL OBSERVATION

In this section we consider problem (1.2) in a general setting and
establish convexity of the constant associated with Lipschitzian selection
operators. We do not attempt any complete treatment of the general case.

For any Lipschitzian selection operator T°, let C(T") be the smallest
number satisfying

1) =T N<CT) | f—h forallf, he B.

Let X be the vector sace of all operators with domain and range B. Let X’
be the subset of X consisting of all Lipschitzian selection operators 7.

PrROPOSITION 2.1. X' is a convex subset of X and C(T') is u convex
function of T' over X'

Proof. Let T,,T,eX'. Let also 0<Ai<1 and Ty=4AT,+(1 —4) T,.
Since T(f). T,(f)eG, and G, is convex, we conclude that T4(f)eG,.
Now for all /, he B we have

1T =TI < AT = T () 4+ (L= 2) [ T5(f) = Ta(h)]
S(2C(T )y + (L= 2) C(TL)) | /= hll.

Hence, Toe X" and X' is convex. Also
(T <LC(TH)+ (1 —2) C(T,),

which establishes the convexity of C(7"). The proof is now complete.
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3. THE GREATEST CONVEX MINORANT

In this section we consider the problem of finding a convex function
nearest to a given function f but not exceeding it at any point. The greatest
convex minorant of /is the maximal optimal solution to this problem. We
show that the operator mapping f to its greatest convex minorant is an
optimal Lipschitzian selection operator with C=1 and D =2.

Let S=171=1[a,b], a closed real interval and B the set of all bounded
functions on I with uniform norm (1.1). A function k in B is said to be con-
vex if k(As+ (1 —A) 1)< Ak(s)+ (1 —A)k(t)forall s,rinJTand all 0< A< ]
[15]. For each fin B, we let

K, = {k: kisconvex and k(s) < f(s)forall se I}, (3.1

and consider problem (1.2). Clearly, K, is a nonempty closed convex sub-
set. For notational convenience later, we replace A(f) of (1.2) by A(f).
Thus (1.2) becomes

Af)=I/~gl=infl] f—k|: ke K,}. (32)

We observe that a convex function is continuous in the interior of  [15].
We define the greatest convex minorant f of f to be the largest convex
function which does not exceed f at any point in /. Specifically,

f(s)=suplk(s):keK,} allsel

Since the pointwise supremum of a set of convex functions is convex [15],
it follows that f is convex with f< /. It is easy to show that f minimizes
| f— k|l for k in K,and thus A4(f)= |/~ f|. In addition, /> g for all g in
G, and hence fis the maximal optimal solution to the problem. The follow-
ing example, to be used later, illustrates that a minimizer g in (3.2) is not
unique in general. Define f, on [0, 1] by

Jols)= —1, s=0,

= 1, O<s< L.

(3.3)

It is easy to verify that fy(s)=2s—1, 0<s< 1 and when f = f,,
G,={g gisconvex and — 1 < g(s) < fo(s)forall 0<s<1}.

We now state our main result for the mapping f — f.

THEOREM 3.1. Define T: B— B by T(f)= f where f is the greatest con-
vex minorant of f in B. Then

IT(F Y =TI <IIf—hl  forallf heB, (3.4)
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and
A(f) = AR <2\ f~hl  forallf heB. (3.5)
T is an optimal Lipschitzian selection operator with C=1 and D=2 in (1.3)
and (1.5), respectively.
In order to prove Theorem 3.1, we establish some preliminary results.

For any fin B and 7 in I, we let

Lif,ty={) {(u,v):a<u<v<h, re(u,v), fislinear on (1, v)}. (3.6)

We define the linear set L(f) of / by
L(fy={j (LU ntel] (3.7)

LEMMA 3.1. L(f.t) is either empty or is some nonempty open interval
(¢,,d,) on which [ is linear.

Proof. Assume that L(f, ¢) is nonempty. Define

c=c,=nflura<u<v<h, te(u ), fislinear on (u, v)},

d=d,=sup{via<u<v<b, te(u v), fislinear on (1, v)}.

Clearly ¢<d Since (¢, d) contains each (u, v) in (3.6), we have (¢, d)>
L(f, ). Let x, ve(c,d) with x< y. LetalsoO</<land z=4ix+ (1 ~ 1) y.
We show that L(f, t)= (¢, d) and f(z)=Af(x)+ (1 — &) f(»), 1e., fis linear
on (¢, d). By the definition of ¢ and d, there exist intervals (u, v) and (r, 5)
containing ¢ such that f is linear on each of (i, v), (r,s), and u<x < y <s.
It is easy to show that fis linear on (4, s) and thus (u, ) is one of the open
intervals in (3.6). It follows that x, ye L(f, t) and L(f, t)= (¢, d). Again by
hinearity of f on (u, 5) we have f(z)=Af(x)+ (1 —4) f(y). Thus fis linear
on (c, d). The proof is now complete.

LEMMA 3.2 If L(f, Y~ L{[, s) is nonempty then L(f, t)=L({. s).

Proof. Let ueL(f,t)nL(f.s). By Lemma3.l, L(f,?)=(c,,d,} and
L(f,u)=(c,,d,). Since ue(c,, d,) and f is linear on (c,, d,), we conclude
from the definition of L(f, u) that (¢, d,) < L(f, u). Hence te(c,, d,) and
(c..d)= L(f, t). Thus L(f, #)=L(f, u). Similarly L(f. s)= L(f,u). The
proof is now complete.

ProposSITION 3.1, If L(f) is nonempty for some f in B, then

Lif)=U (.. d,)

n
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where the union is over a finite or countably infinite set of disjoint open inter-
vals contained in I so that f is linear on each of them.

Proof. By Lemma 3.1, we have

Lify={) {(c,,d):tel}.

By Lemma 3.2, any two nonidentical intervals (¢,, d,) are disjoint. Since
each interval includes a distinct rational number, the countability of inter-
vals follows and the required result is established.

PropPosITION 3.2. If f is the greatest convex minorant of [ in B, then
fla)= f(a) and f(b)= f(b). If te [— L([) then f(t)= f(t) or there exists a
sequence {t,> of points in I with t,#1t for each n such that t,—t and

fle,) = f(1).

Proof. We first show that f(s) = f(s) if s = a, b. Define a function p in B
by

p(s)=f(s) if s=a,b,
=7(s) if sel(a b).

Since f>f we see that p>f Clearly, p is convex and hence by the
definition of f, we have /> /> p. Consequently, /= p and f(s)= f(s) for
s=a,b.

Now we prove the remaining part. Let ref— L{f) and t#a or b
Assume that there exists an ¢ >0 and an open interval (u, v) with 1€ (u, v)
such that f(s)— f(t)>¢ for all s in («, v). We shall reach a contradiction.
By continuity of fon (a, b), there exists an open interval (x, )< (u, ) such
that te(x, y) and

2F(xX)+ (1= 2) f(») = flr) <e  forallO<i<l. (3.8)

Combining this with the hypothesis f(s)— f(¢)>¢ for s in (u, v) we find
that

f(8) = (Af()+ (=D f(y)>0 forall se(x, v),all0 <A< 1. (3.9)

Now define a convex function ¢ on I by
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Note that 4 is linear on (x, y). By (3.10) and the convexity of f, we have
g = [ Again, (3.9) and the fact that / = f show that / > ¢. Hence g = /. Now
since ¢ L(f), f/is not linear on (x. v). But ¢ is linear on (x, y) which is a
contradiction. This establishes the existence of the sequence {r,) with
properties as stated. The proof is now complete.

Before stating our next proposition, we observe that for a convex
function k the right-hand (left-hand) limit k(a + 0} (k(h —0)) exists at a(h)
and k(a) =z k{a+0) (k(b)=k(b—-0)) [15].

ProrosiTION 3.3. Let f and h respectively be the greatest convex
minorant of {and h in B. Then

(i) fla+0)=min(f(a), liminf{ /(s):s > a}},
f(h—0)=min(f(b ),llmmf’f( s—b}).

(i) | fla+0)—hla+0) < | f— Al
f(h=0)=h(b—0)| < || f=hi.

Proof. We show the first equality in (i). The proof for the second
equality is similar. By the convexity of / and Proposition 3.2, we have
fla+0)< f(a) = f(a). Again since f(s) < f{s) for all s, by taking lim inf, we
conclude that

Jla+0)<min(f(a), im inf] f(s): s > a}). (3.11)

Now suppose that strict inequality holds in (3.11). We shall reach a con-
tradiction. In this case, there exists a ¢ in (a, b) such that

supl f(s):a<s<i}<inf{f(s)a<s<t} =4, (3.12)

say. Now define,

fUs) = fla) s=a,
s—d\ . t—s"
:<ta>ﬂ”+<t_;_a) 0, SE(a, 1),
= f(s), selrnb].

Clearly, f* is convex and by (3.12) /< /< f. Again by (3.12), f(s) < /°(s)
for all s in (q, 1), which is a contradiction to the fact that fis the greatest
convex minorant of f. Hence the first equality in (i) is established.

We now prove the first inequality in (ii). The proof for the second
inequality 1s similar. We first show that

Jla+0)—ha+0)< |/ —hl. (3.13)
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Using (i), suppose first that 4(a +0) = h(a). Then since f(a +0) < f(a), the
inequality (3.13) immediately follows. Now suppose that

h(a+0)=lim inf{A(s): s > a).
Then, given ¢> 0, there exists x in (a, b) satisfying simultancously
|hla+0)—h(x)| <e/2,  fla+0)< flx)+e/2.
It follows that
fla+0)—hla+0)< f(x)—h(x)+e<| f—h| +e

Thus, (3.13) is established. A symmetric argument completes the proof of
the first inequality in (ii). The proof of the proposition is now complete.
Now we prove Theorem 3.1.

Proof of Theorem 3.1. We first establish (3.4). Suppose that 1€ I— L(h).
Then by Proposition 3.2, A(t)=h(t) or h(t)=limit h(z,) for some sequence
t,—t, t,#t In the former case (and this case, by Proposition 3.2, includes
r=a or b), we have

SO =k <y —h)< | f—h.

In the latter case assume # a and ¢ # b. Since / < f'and f, h are continuous
n (a, b), we have

f(r) = h(r)y=limit(f(z,) — h(z,)) <limit(f(z,) = h(1,)) < | f = hl|.
Hence in either case we have

f =k <] f~hl. (3.14)

Now suppose that 7€ L(4). Then by Proposition 3.1, te(c, d)=(c,. d,)
for some » and 4 is linear on (¢, d). Let t = ic+ (1 — i) d for some 0 < A< 1.
Assume first that ¢ #«a and d # b. Then

h(t)=Aih(c)+ (1 —2) A(d).
Again, by convexity of / we have
A <Af(ey+(1=4) f(d).

On subtraction, we find that

() =R <A(fle)—hle) + (1 = D(f(d) — h(d)). (3.15)

640 4532
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Now ¢, del— L(h). Consequently, by the first part of the proof, (3.14)
holds with 1= ¢ and d. It follows from (3.15) that (3.14) holds for . Now
assume that c=g and d#b. Then r=4a+ (1 — A) d and

h(t)=Ah(a +0)+ (1 — 2) A(d).

Again, the function obtained from f by replacing f(a) by f{a +0) is convex.
Hence

S <Af(a+0)+ (1 = 2) f(d).
On subtraction, we have
Fy=h() < A(fla+0)—h(a+0))+ (1 — A f(d)— h(d)).

By Proposition 3.3(ii) and arguing as before, we conclude that (3.14) holds
for 1. Other cases for which d = b may be considered similarly. Thus (3.14)
holds for all ¢ in /. A symmetric argument shows that 4(t) — f(t)< || f — h|
and this establishes (3.4).

To show (3.5), we let £>0. Then there exists s in / such that A(f)<
S1s)— f(s)+ ¢ Again A(h) = h(s)— h(s). On subtracting and using (3.4) we
obtain

A(f) =AY < f(s) = hls)— (f(s) = his)) + ¢
SIf=hl+0f=hl+e<2|f—hl+e

Thus A(f)— A(h) <2 || f—h|. A symmetric argument completes the proof
of (3.5). (An alternative proof of (3.5) is given at the end of Sect. 4.)

We now show that 7 is optimal. We show that C'=1 is optimal in the
sense of (1.4). Indeed, if / and A are two distinct convex functions then
G,=1{/f} and G,= {h}. Consequently, for any selection operator 7', we
must have T'(/)=/f and T'(h)=h. Hence (1.3) with T=T" shows that
C > 1. Since (3.4) shows that C <1 the optimality of C =1 and hence of T
1s established. We now show that D=2 is optimal in the sense of (1.6).
Consider f, defined by (3.3). Let 2 on [0, 1] be identically zero. Then
A(f)=2, A4(h)=0, and | f,—h{| =1. We see from (1.5) that D>2. But
since (3.5) shows that D <2, the optimality of D=2 is established. The
proof of the theorem is now compiete.

We now make a remark. It is possible to establish Theorem 3.1 by a
shorter proof similar to the one for the following result in fixed point
theory: the mapping of closed bounded subsets onto their closed convex
hulls is nonexpansive with respect to the Hausdorff metric. However, the
proofs presented throw much additional light on the structure of the
problem.
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4. APPROXIMATION BY CONVEX FUNCTIONS

In this section, we consider the problem of finding a convex function
nearest to a given function f. We show that the operator mapping f to the
maximal optimal solution of the problem is an optimal Lipschitzian selec-
tion operator with C=2 and D=1.

Let S=7 and B be as in Section 3. Let K be the set of all convex
functions on 1. It is easy to verify that K is a closed convex cone, ie., K is
closed and Af + uhe K whenever f, he Kand 220, pu=20. We let K, =K in
(1.2) and rewrite (1.2) as

A(f)=1f—gl=infl| f—k|:ke K] (4.1)

The following theorem is essentially a restatement of parts of Theorems
2.1 and 3.1 of [19].

THEOREM 4.1.  Let f€ B. There exists an optimal solution '€ K to the
problem (4.1} with the property that "= g for all optimal solutions g to
(4.1). Let f be the greatest convex minorant of f and A(f)=| f— [|. Then
the following holds:

f(S)=L)+ A ) =)+ AS)  forallsel, (4.3)
where obviously A(fy=11—1"|.

Such a solution f* is called the maximal optimal solution to the problem.
The above theorem shows that it is the greatest convex minorant shifted
upward through a certain distance. For the function f;, defined by (3.3) it is
easy to see that f(s)=2s, 0<s< 1, and when /= /.

G,=1{g:gisconvexand 0 < g(s)< fi(s)forall0<s< 1},

We now state our main result for the operator f — f".

THEOREM 4.2. Define T: B— B by T(f)=[" where [ is the maximal
optimal solution to (4.1). Then

17/ M f—hl+ Ay —Ah)|  forall [, he B.  (4.4)
Consequently,
TN =T <I/=hlif ACf)=A(h). (4.5)

Furthermore,

|[A(fY =AM < || f—h Sorall f, he B. (4.6)
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and

ITC) =T <2l f=hl  foralf heB. (4.7)

T is an optimal Lipschitzian sclection operator with C=2 and D=1 in (1.3)
and (1.5), respectively.

Proof. This follows from Theorems 4.1 and 3.1. Clearly, (4.4) is a con-
sequence of (4.3) and (3.4). Equality (4.2) combined with (3.5) gives (4.6).
Again, (4.4) and (4.6) give (4.7).

We now establish the optimality of 7. We show that C' =2 is optimal in
the sense of (1.4). Define a sequence of functions f,, n=1,2.. on
I1=10.1] by

f(s)= —1+2ns, 0<s<1/n,

=1 l/n<s<1.

L}

It is easy to verify that f{s)=2s—1/n, 0<s<|, and G,={f,} when
f=/f,. Consequently, for any selection operator 7’ we must have
T'(f, )=/, Let h=0on [, then =0 on 1. G,={h"}, and T'(h)=h"
Clearly |/, —hl=1, | f,—H|=2—1/n, A(f,)=1—1/n, and A4(h)=0.
Hence (1.3) with 7= T shows that C > 2. But since (4.7) shows that C <2,
the optimality of C'=2 and hence of T 1s established. Inequality (4.6) shows
that D<1. The optimalty of D=1 in the sense of (1.6) follows
immediately from Theorem 3.1 and the fact that A(f)= A(f)/2. The proof
of the theorem is now complete.
We now make two remarks. Observing (4.5), we define

C=infsup{|T'(/) =T W/ f—hl: /. he B, [ #h A(f)=A(h)},

where the infimum is taken over all 7'. We assert that ¢"=1 and the
infimum is attained when T'=T. Thus T is also optimal in this restricted
sense. To prove this assertion, let f(s)=1 on [ and 4 be identically zero as
before. Then f'=f and h'=h Consequently, A(f)=A(h)=0 and
| f—h|=1. For any selection operator 7'. we must have T'(f)=f and
T’(h)=h. It follows that C" = 1. Now (4.5) shows that C'=1 and hence the
assertion is established.

Our second remark pertains to the derivation of (4.6). From first prin-
ciples, we obtained (3.5), and then using (4.2) established (4.6). However,
results of type (4.6) are more general. Indeed, if F is a nonempty subset of a
normed linear space X, then for all x, y in X we have

|E(x, F)— E(y, F)| < |lx ~ »]. (4.8)
where

E(x, Fy=inf{|x—z|:ze F}.
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See, for example, [12, p. 17]. Hence, (4.6) follows at once from (4.8) with
X=Band F=K. Then (4.6) and (4.2) establish (3.5).

5. GENERALIZED ISOTONE OPTIMIZATION

In this section, we determine an optimal Lipschitzian selection operator
for the problem of generalized isotone optimization and also construct a
class of nonoptimal Lipschitzian selection operators with different values of
C.

Let S be any set with partial order <. A partial order is a relation < on
S satisfying (i) reflexivity, i.c., s<s for all s in S, and (ii) transitivity, i.c., if
s,t,uarein Sand s<t t<uthen s<u [6, p. 4]. A partial order is said to
be antisymmetric if s, # are in S, and s<¢, t<s then s=¢ For sake of
generality we do not include the condition of antisymmetry in the
definition of the partial order as is often done. Let B be the set of all boun-
ded functions on S with the uniform norm (1.1). Let P and @ be two
arbitrary subsets of S. Given f in B, the generalized isotone optimization
problem is to minimize || f— k| over all k in B satisfying

k(s) < k(1) forall s <1, (5.1)
k(s)=0 forallse P, (5.2)
k(s)<0 forallse Q. (5.3)

We let K denote all functions k in B satisfying (5.1)—(5.3). It is easy to
verify that K is a closed convex cone. It is never empty since the function
which is identically zero on S is in K. As before, we denote by g an optimal
solution to the above problem so that

A(f)=1/— gl =inf{|| f—kl: ke K}.

We observe that the above problem allows for equality constraints. Since
the partial order is not necessarily antisymmetric, we may let s<¢ and
1 <s, where s # t. In such a case, (5.1) shows that k(s) = k(¢). In addition, if
PN Q is not empty then k(s)=0 for all s in Pn Q. Some applications of
this problem are pointed out in [20] where a weighted uniform norm is
considered. We remark here that if A(s), s€ S are real numbers with
|[A(s)] =1 for all s, then the above problem is equivalent to the one
obtained by replacing (5.1) by

As) k(s) < A() k(1) foralls<zt. (5.4)
To see this let f1(s)=A(s) f(s) for all s in § and all fin B. Define
Pi={Pn{seS:As)>0}}u{0n{seS:As)<0}},
O, ={Pni{seS Ms)<0}}u{Qn{seS A(s)>0}]}.
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Then our new problem with constraints (5.4), (5.2), and (5.3} 1s equivalent
to minimizing || /, — k|| subject to (5.1)-(5.3), where k, P, and Q are
respectively replaced by k,. P,, and Q,. This observation immediately
shows that approximation by odd functions is a special case of our
problem. A real function & defined on an interval /= [ —«, ¢ ], where ¢ >0,
is odd if k(—s)= —k(s) for all s in [0, ¢]. Indeed, in such a case define the
partial order < on S by the following: s<ys for all se§, —s<s, and
s< —s for all se(0,a]. Again, we let P=Q=1{0}, A(s)=1 for all s in
[—a.0] and 4(s)= —1 for all s in (0, «].

Before deriving the Lipschitz condition for our problem. we introduce
some notation and state relevant results from [20]. For any subset £ of S,
we define its indicator function y, by

rels)=1, il sekE,
=0, otherwise.

We adopt the convention 0- o =0. It 1s convenient to view the partial
order < as a set of ordered pairs [16, p. 22, viz.

I'=i(s.1)eSxS:s5,1€8S, s<1}.
Let

Py={reS:s<tforsomese P,

Qo= {seS:s<tforsomereQ}.

A subset E of S is called an upper (lower) set if an element s in S is also in
E whenever there exists a 1 in £ with 1 <s (s<1t). Clearly, P, (Q,) is the
smallest upper (lower) set containing P(Q). Given f'in B, let

0(f)=max{(1/2) sup | f(s)—f{1)}, sup{—/Cs}}, sup {f(5)]]. (5.5)

(s.0ye @’ ye Py v Qo
Define real valued functions f, and f* on § by

J(s)=sup (max{ (1) —0(f), —x(l~yp1)})  seS. (56)

S*(s)y=inf (min} f(u)+0(f), (1 =z, ), seS.  (57)

Ty gt
G-

The following theorem is essentially a restatement of Theorems 2.1 and 2.2
of [20].

THEOREM 5.1.  For the generalized isotone optimization problem  the
following holds:
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(1)  Minimum distance duality,
0 f)=A(f)=min{|| f—k|:keK}  forall feB. (5.8)

(it}  Optimal solutions: Both f, and [* are elements of K and are
optimal solutions to the problem, ie.,

ASY= 1S =Ll =1 =S

Furthermore, [, < f* and any k in K is an optimal solution to the problem if
and only if f, <k <™

We now state our main result of this section. For fe B define /"=
(f +f*))/2. Since f, <" < f* above theorem shows that /" is an optimal
solution to our problem and A(f)=0(/)=f—-f"l.

THEOREM 5.2. Define T: B— B by T(f) = f". Then
ITH =TI < f=hl  forall [, heB, (5.9)
and
Ay =AN <[ f=hl  forall f heB. (5.10)
If K is not identically equal to the zero function on S, then T is an optimal

Lipschitzian selection operator with C=1 in (1.3).

Proof. Since A(f)=0(f) and A(h)=0(h), using (5.5) one may easily
verify that (5.10) holds. Alternatively, (5.10) is an immediate consequence
of (4.8). We now show (59). Let seS and ¢>0. We show that
|/ (sy=h(s)| < I/ —hl. By the definition of f,, and h*, there exists 1<
and u = s such that

Silsy<max{f(1)=0(f), —oc(l—yp(th} +e& (5.11)
h*(s)=min{h(u)+ 6(h), (1 — yo(0)} —e (5.12)
Again by the definitions of /* and /. we have
FH(s)<mind f(u) + 0(f), 0(1 — yo(u)) ], (5.13)
h (sYzmax{h(r)—0(h), —oc(l — (1))} (5.14)
For convenience, we let

m(fy=max{f(t)—0(f), —oc(l—yxp1))}
+min{ f(u)+ 0(f). (1 —xo(u))}
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and
m(h)=max{h(t)—0(h), — (1l — yp(1))}
+min{h(u)+ 0(h), (1 — yolu)) .

Clearly, (5.11) and (5.13) show that /"(s) < () m(f) + &/2. Similarly, (5.12)
and (5.14) give h'(s) = (1) m(h) —¢/2. Consequently,

S1(s) =R (s) < (1/2)m(f) = m(h)) + e (5.15)
We show that /'(s)—h'(s) < || f — k|| + ¢&. We consider four cases:
(1) Suppose that ¢ P and u¢ Q. In this case yp(¢)=yx,(u) =0 and
consequently m( f) = f(t) + flu), m(h)=h(t)+ h(u). Hence (5.15) gives
S =R <G =h() + flu)—hw) +e< | [~ hll +&

(i1) Suppose that re P and ue Q. Then since 1 <s<u we have that
te @, and ue P,. By the definition of 8(f), we have 8(f)= f(1), 8(f) =
—f(u). Similar conclusions hold for (). Again, y(1)=y,(u)=1. Hence
m(fy=m(h)=0. From (5.15) we see that /'(s)—A'(s)<e

(ili) Suppose that te P, u¢ Q. Then
m(f)=max{f(1)—0(f), 0} + f(u)+6(f)
=max{ /(1) + flu), f(u)+0(/)},
Similarly,
m(h)=max{h(1)+ h(u), h(u) + 8(h) .
Now we use the following inequality,
max{a,, d,} —max{b,, b,} <max{a, —b,,a,—b,}
to conclude that
m(f)—mlh) < max{f(1)—h(1)+ fu) —h(u), f(u) —h(u)+ 0(f) — 6(h)}.

Since 0(f) = A(f), using (5.10) we find that m(f)—m(h)<2 || f—h|. Now
(5.15) shows that f'(s)—h'(s)< | f—h| + e

(iv) Suppose that r¢ P and ue Q. The proof of this case is similar to
that of case (iii).

We have thus shown in all cases that f'(s) —A'(s) < || f — Al A symmetric
argument completes the proof of | f'(s)—h'(s)| < || f—hll. We have thus
established (5.9).
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We now show that 7 is optimal. If K is not identically equal to the zero
function, then since K is a cone, it must have two distinct elements, say f
and A. For any selection operator 7’ we must have 7°(f)= fand T'(h)=h.
Hence (1.3) with 7= T’ shows that C > 1. But since {5.9) shows C <1, the
optimality of C =1 in the sense of (1.4) and hence of T is established. The
proof of the theorem is now complete.

We make one remark. Clearly, (5.10) shows that D<1 in (1.5)
However, in the generality of the statement of Theorem 5.2, one cannot
conclude that D= 1. Indeed, if P=Q = and s<r if s=1, then we have
K=B. Then A(f)=0 for all fin B. Thus D=0.

We now construct a class of nonoptimal Lipschitzian selection operators
T, with different values of C. Indeed, for 0<A< let T,(f)=4Af, +
(I1=4)f* Since f, <T,(f)<f* by Theorem 5.1, T,(f) is an optimal
solution of the problem for all 0<A< 1. The following resuit may be
established by arguments similar to those used in the proof of Theorem 5.2.

ITA(N) =T <A+ [1=24) | f—hl  forall f heB. (5.16)

When A =1, T, equals the operator T in Theorem 5.2. The following exam-
ple will show that the constant (1 + |l —24|) in (5.16) cannot be reduced.
Let S=17=[0, 1] with usual order on reals, P=Q = (. Define

_f(S):—l, SZO,%,

= 1 otherwise.
Then
Jels)= =2, s=0,
= 0 otherwise,
and

f*s)=0,  0<s<3,

=2 otherwise.

Let / be the identically zero function, then equality holds in (5.16) for all
values of 0 <A< 1.
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